

Welcome to PyEEGLab’s documentation!

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyeeglab	

 	
 	
 pyeeglab.cache	

 	
 	
 pyeeglab.cache.cache	

 	
 	
 pyeeglab.database	

 	
 	
 pyeeglab.database.index	

 	
 	
 pyeeglab.dataset	

 	
 	
 pyeeglab.dataset.dataset	

 	
 	
 pyeeglab.io	

 	
 	
 pyeeglab.io.loader	

 	
 	
 pyeeglab.io.raw	

 	
 	
 pyeeglab.preprocessing	

 	
 	
 pyeeglab.preprocessing.brain_connectivity	

 	
 	
 pyeeglab.preprocessing.channel_selector	

 	
 	
 pyeeglab.preprocessing.data_converter	

 	
 	
 pyeeglab.preprocessing.filter_selector	

 	
 	
 pyeeglab.preprocessing.frame_generator	

 	
 	
 pyeeglab.preprocessing.frequency_selector	

 	
 	
 pyeeglab.preprocessing.graph_generator	

 	
 	
 pyeeglab.preprocessing.normalization	

 	
 	
 pyeeglab.preprocessing.pipeline	

 	
 	
 pyeeglab.preprocessing.stat_features	

 	
 	
 pyeeglab.text	

 	
 	
 pyeeglab.text.text_mining	

Index

 D
 | E
 | I
 | L
 | M
 | P
 | S

D

 	
 	Dataset (class in pyeeglab.dataset.dataset)

 	
 	download() (pyeeglab.dataset.dataset.Dataset method)

E

 	
 	environment (pyeeglab.dataset.dataset.Dataset attribute)

I

 	
 	index() (pyeeglab.dataset.dataset.Dataset method)

L

 	
 	load() (pyeeglab.dataset.dataset.Dataset method)

 	
 	lowest_frequency (pyeeglab.dataset.dataset.Dataset attribute)

M

 	
 	maximal_channels_subset (pyeeglab.dataset.dataset.Dataset attribute)

P

 	
 	pipeline (pyeeglab.dataset.dataset.Dataset attribute)

 	pyeeglab (module)

 	pyeeglab.cache (module)

 	pyeeglab.cache.cache (module)

 	pyeeglab.database (module)

 	pyeeglab.database.index (module)

 	pyeeglab.dataset (module)

 	pyeeglab.dataset.dataset (module)

 	pyeeglab.io (module)

 	pyeeglab.io.loader (module)

 	pyeeglab.io.raw (module)

 	pyeeglab.preprocessing (module)

 	
 	pyeeglab.preprocessing.brain_connectivity (module)

 	pyeeglab.preprocessing.channel_selector (module)

 	pyeeglab.preprocessing.data_converter (module)

 	pyeeglab.preprocessing.filter_selector (module)

 	pyeeglab.preprocessing.frame_generator (module)

 	pyeeglab.preprocessing.frequency_selector (module)

 	pyeeglab.preprocessing.graph_generator (module)

 	pyeeglab.preprocessing.normalization (module)

 	pyeeglab.preprocessing.pipeline (module)

 	pyeeglab.preprocessing.stat_features (module)

 	pyeeglab.text (module)

 	pyeeglab.text.text_mining (module)

S

 	
 	set_minimum_event_duration() (pyeeglab.dataset.dataset.Dataset method)

 	
 	set_pipeline() (pyeeglab.dataset.dataset.Dataset method)

pyeeglab.cache package

Submodules

pyeeglab.cache.cache module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.database package

Submodules

pyeeglab.database.index module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.dataset.chbmit package

Submodules

pyeeglab.dataset.chbmit.chbmit_dataset module

pyeeglab.dataset.chbmit.chbmit_index module

pyeeglab.dataset.chbmit.chbmit_loader module

Module contents

pyeeglab.dataset.eegmmidb package

Submodules

pyeeglab.dataset.eegmmidb.eegmmidb_dataset module

pyeeglab.dataset.eegmmidb.eegmmidb_index module

pyeeglab.dataset.eegmmidb.eegmmidb_loader module

Module contents

pyeeglab.dataset.tuh_eeg_abnormal package

Submodules

pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_dataset module

pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_index module

pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_loader module

Module contents

pyeeglab.dataset.tuh_eeg_artifact package

Submodules

pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_dataset module

pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_index module

pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_loader module

Module contents

pyeeglab.dataset package

Subpackages

	pyeeglab.dataset.chbmit package
	Submodules

	pyeeglab.dataset.chbmit.chbmit_dataset module

	pyeeglab.dataset.chbmit.chbmit_index module

	pyeeglab.dataset.chbmit.chbmit_loader module

	Module contents

	pyeeglab.dataset.eegmmidb package
	Submodules

	pyeeglab.dataset.eegmmidb.eegmmidb_dataset module

	pyeeglab.dataset.eegmmidb.eegmmidb_index module

	pyeeglab.dataset.eegmmidb.eegmmidb_loader module

	Module contents

	pyeeglab.dataset.tuh_eeg_abnormal package
	Submodules

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_dataset module

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_index module

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_loader module

	Module contents

	pyeeglab.dataset.tuh_eeg_artifact package
	Submodules

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_dataset module

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_index module

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_loader module

	Module contents

Submodules

pyeeglab.dataset.dataset module

	
class pyeeglab.dataset.dataset.Dataset(path: str, name: str, version: str = None, extensions: List[str] = ['.edf'], exclude_file: List[str] = None, exclude_channels_set: List[str] = None, exclude_channels_reference: List[str] = None, exclude_sampling_frequency: List[str] = None, minimum_annotation_duration: float = None)[source]

	Bases: abc.ABC

	
download(user: str = None, password: str = None) → None[source]

	

	
environment

	

	
index() → None[source]

	

	
load() → Dict[KT, VT][source]

	

	
lowest_frequency

	

	
maximal_channels_subset

	

	
pipeline = None

	

	
set_minimum_event_duration(duration: float) → pyeeglab.dataset.dataset.Dataset[source]

	

	
set_pipeline(pipeline: pyeeglab.pipeline.pipeline.Pipeline) → pyeeglab.dataset.dataset.Dataset[source]

	

Module contents

pyeeglab.io package

Submodules

pyeeglab.io.loader module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.io.raw module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing package

Submodules

pyeeglab.preprocessing.brain_connectivity module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.channel_selector module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.data_converter module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.filter_selector module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.frame_generator module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.frequency_selector module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.graph_generator module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.normalization module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.pipeline module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.preprocessing.stat_features module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab.text package

Submodules

pyeeglab.text.text_mining module

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

pyeeglab package

Subpackages

	pyeeglab.cache package
	Submodules

	pyeeglab.cache.cache module

	Module contents

	pyeeglab.database package
	Submodules

	pyeeglab.database.index module

	Module contents

	pyeeglab.dataset package
	Subpackages
	pyeeglab.dataset.chbmit package
	Submodules

	pyeeglab.dataset.chbmit.chbmit_dataset module

	pyeeglab.dataset.chbmit.chbmit_index module

	pyeeglab.dataset.chbmit.chbmit_loader module

	Module contents

	pyeeglab.dataset.eegmmidb package
	Submodules

	pyeeglab.dataset.eegmmidb.eegmmidb_dataset module

	pyeeglab.dataset.eegmmidb.eegmmidb_index module

	pyeeglab.dataset.eegmmidb.eegmmidb_loader module

	Module contents

	pyeeglab.dataset.tuh_eeg_abnormal package
	Submodules

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_dataset module

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_index module

	pyeeglab.dataset.tuh_eeg_abnormal.tuh_eeg_abnormal_loader module

	Module contents

	pyeeglab.dataset.tuh_eeg_artifact package
	Submodules

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_dataset module

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_index module

	pyeeglab.dataset.tuh_eeg_artifact.tuh_eeg_artifact_loader module

	Module contents

	Submodules

	pyeeglab.dataset.dataset module

	Module contents

	pyeeglab.io package
	Submodules

	pyeeglab.io.loader module

	pyeeglab.io.raw module

	Module contents

	pyeeglab.preprocessing package
	Submodules

	pyeeglab.preprocessing.brain_connectivity module

	pyeeglab.preprocessing.channel_selector module

	pyeeglab.preprocessing.data_converter module

	pyeeglab.preprocessing.filter_selector module

	pyeeglab.preprocessing.frame_generator module

	pyeeglab.preprocessing.frequency_selector module

	pyeeglab.preprocessing.graph_generator module

	pyeeglab.preprocessing.normalization module

	pyeeglab.preprocessing.pipeline module

	pyeeglab.preprocessing.stat_features module

	Module contents

	pyeeglab.text package
	Submodules

	pyeeglab.text.text_mining module

	Module contents

Module contents

Create a new Mock object. Mock takes several optional arguments
that specify the behaviour of the Mock object:

	spec: This can be either a list of strings or an existing object (a
class or instance) that acts as the specification for the mock object. If
you pass in an object then a list of strings is formed by calling dir on
the object (excluding unsupported magic attributes and methods). Accessing
any attribute not in this list will raise an AttributeError.

If spec is an object (rather than a list of strings) then
mock.__class__ returns the class of the spec object. This allows mocks
to pass isinstance tests.

	spec_set: A stricter variant of spec. If used, attempting to set
or get an attribute on the mock that isn’t on the object passed as
spec_set will raise an AttributeError.

	side_effect: A function to be called whenever the Mock is called. See
the side_effect attribute. Useful for raising exceptions or
dynamically changing return values. The function is called with the same
arguments as the mock, and unless it returns DEFAULT, the return
value of this function is used as the return value.

Alternatively side_effect can be an exception class or instance. In
this case the exception will be raised when the mock is called.

If side_effect is an iterable then each call to the mock will return
the next value from the iterable. If any of the members of the iterable
are exceptions they will be raised instead of returned.

	return_value: The value returned when the mock is called. By default
this is a new Mock (created on first access). See the
return_value attribute.

	wraps: Item for the mock object to wrap. If wraps is not None then
calling the Mock will pass the call through to the wrapped object
(returning the real result). Attribute access on the mock will return a
Mock object that wraps the corresponding attribute of the wrapped object
(so attempting to access an attribute that doesn’t exist will raise an
AttributeError).

If the mock has an explicit return_value set then calls are not passed
to the wrapped object and the return_value is returned instead.

	name: If the mock has a name then it will be used in the repr of the
mock. This can be useful for debugging. The name is propagated to child
mocks.

Mocks can also be called with arbitrary keyword arguments. These will be
used to set attributes on the mock after it is created.

 All modules for which code is available

	pyeeglab.dataset.dataset

 Source code for pyeeglab.dataset.dataset

import os
import json
import logging
import hashlib
import pickle

from abc import ABC, abstractmethod
from dataclasses import dataclass
from functools import reduce
from multiprocessing import Pool, cpu_count
from operator import add, and_
from uuid import uuid4, uuid5, NAMESPACE_X500

from typing import Dict, List, Tuple

import mne
from sqlalchemy import create_engine
from sqlalchemy.orm import Session, sessionmaker, Query

from .declarative_base import Base
from .file import File
from .metadata import Metadata
from .annotation import Annotation

from ..pipeline import Pipeline

[docs]@dataclass(init=False)
class Dataset(ABC):
 path: str
 name: str
 version: str

 extensions: List[str]
 exclude_file: List[str]
 exclude_channels_set: List[str]
 exclude_channels_reference: List[str]
 exclude_sampling_frequency: List[int]
 minimum_annotation_duration: float

 session: Session
 query: Query

 pipeline: Pipeline = None

 def __init__(
 self,
 path: str,
 name: str,
 version: str = None,
 extensions: List[str] = [".edf"],
 exclude_file: List[str] = None,
 exclude_channels_set: List[str] = None,
 exclude_channels_reference: List[str] = None,
 exclude_sampling_frequency: List[str] = None,
 minimum_annotation_duration: float = None
) -> None:
 # Set basic attributes
 self.path = os.path.abspath(os.path.join(path, version))
 self.name = name
 self.version = version

 # Set data set filter attributes
 self.extensions = extensions if extensions else []
 self.exclude_file = exclude_file if exclude_file else []
 self.exclude_channels_set = exclude_channels_set if exclude_channels_set else []
 self.exclude_channels_reference = exclude_channels_reference if exclude_channels_reference else []
 self.exclude_sampling_frequency = exclude_sampling_frequency if exclude_sampling_frequency else []
 self.minimum_annotation_duration = minimum_annotation_duration if minimum_annotation_duration else 0

 logging.info("Init dataset '%s'@'%s' at '%s'", self.name, self.version, self.path)

 # Make workspace directory
 logging.debug("Make .pyeeglab directory")
 workspace = os.path.join(self.path, ".pyeeglab")
 os.makedirs(workspace, exist_ok=True)
 logging.debug("Make .pyeeglab/cache directory")
 os.makedirs(os.path.join(workspace, "cache"), exist_ok=True)
 logging.debug("Set MNE log .pyeeglab/mne.log")
 mne.set_log_file(os.path.join(workspace, "mne.log"), overwrite=False)

 # Index data set files
 self.index()

 def __getstate__(self):
 # Workaround for unpickable sqlalchemy.orm.session
 # during multiprocess dataset loading
 state = self.__dict__.copy()
 for attribute in ["session", "query"]:
 if hasattr(self, attribute):
 del state[attribute]
 return state

[docs] @abstractmethod
 def download(self, user: str = None, password: str = None) -> None:
 pass

[docs] def index(self) -> None:
 # Init index session
 logging.debug("Make index session")
 connection = os.path.join(self.path, ".pyeeglab", "index.sqlite3")
 connection = create_engine("sqlite:///" + connection)
 Base.metadata.create_all(connection)
 self.session = sessionmaker(bind=connection)()
 # Open multiprocess pool
 logging.info("Index data set directory")
 pool = Pool(cpu_count())
 # Get files path from data set path
 paths = [
 os.path.join(directory, filename)
 for directory, _, filenames in os.walk(self.path)
 for filename in filenames
]
 # Get Files instances form paths, filtering already indexed
 files = self.session.query(File).all()
 files = [file.uuid for file in files]
 files = [
 file
 for file in pool.map(self._get_file, paths)
 if file.uuid not in files
]
 for file in files:
 logging.debug("Add file %s to index", file.uuid)
 # Filter raw data files by extension
 raws = [
 file
 for file in files
 if os.path.splitext(file.path)[-1] in self.extensions
]
 # Get metadata and annotation for data files
 metadatas = pool.map(self._get_metadata, raws)
 annotations = pool.map(self._get_annotation, raws)
 # Close multiprocess pool
 pool.close()
 pool.join()
 # Commit insertions to index
 commits = files + metadatas + reduce(add, annotations, [])
 if commits:
 logging.info("Commit insertions to index")
 self.session.add_all(commits)
 self.session.commit()
 logging.info("Index data set completed")
 # Init default query
 logging.debug("Init default query")
 self.query = self.session.query(File, Metadata, Annotation).\
 join(File.meta).\
 join(File.annotations).\
 filter(~Metadata.channels_reference.in_(self.exclude_channels_reference)).\
 filter(~Metadata.sampling_frequency.in_(self.exclude_sampling_frequency)).\
 filter((Annotation.end - Annotation.begin) >= self.minimum_annotation_duration)
 # Filter exclude file paths
 for file in self.exclude_file:
 self.query = self.query.filter(~File.path.like("%{}%".format(file)))
 logging.debug("SQL query representation: '%s'", str(self.query).replace("\n", ""))

 def _get_file(self, path: str) -> File:
 return File(
 uuid=str(uuid5(NAMESPACE_X500, path)),
 path=path,
 extension=os.path.splitext(path)[-1]
)

 def _get_metadata(self, file: File) -> Metadata:
 logging.debug("Add file %s metadata to index", file.uuid)
 with file as reader:
 info = reader.info
 metadata = Metadata(
 file_uuid=file.uuid,
 duration=reader.n_times/info["sfreq"],
 channels_set=json.dumps(info["ch_names"]),
 sampling_frequency=info["sfreq"],
)
 return metadata

 def _get_annotation(self, file: File) -> List[Annotation]:
 logging.debug("Add file %s annotations to index", file.uuid)
 with file as reader:
 annotations = [
 Annotation(
 uuid=str(uuid4()),
 file_uuid=file.uuid,
 begin=annotation[0],
 end=annotation[0]+annotation[1],
 label=annotation[2],
)
 for annotation in reader.annotations
]
 return annotations

 @property
 def environment(self) -> Dict:
 return {
 "channels_set": self.maximal_channels_subset,
 "lowest_frequency": self.lowest_frequency,
 }

 @property
 def lowest_frequency(self) -> float:
 frequency = self.query.all()
 frequency = min([
 f[1].sampling_frequency
 for f in frequency
], default=0)
 return frequency

 @property
 def maximal_channels_subset(self) -> List[str]:
 channels = self.query.group_by(Metadata.channels_set).all()
 channels = [
 frozenset(json.loads(channel[1].channels_set))
 for channel in channels
]
 channels = reduce(and_, channels)
 channels = channels - frozenset(self.exclude_channels_set)
 channels = sorted(channels)
 return channels

[docs] def set_pipeline(self, pipeline: Pipeline) -> "Dataset":
 self.pipeline = pipeline
 self.pipeline.environment.update(self.environment)
 return self

[docs] def set_minimum_event_duration(self, duration: float) -> "Dataset":
 logging.warning("'set_minimum_event_duration' will be deprecated in the near future")
 self.minimum_annotation_duration = duration
 return self

[docs] def load(self) -> Dict:
 # Compute cache path
 cache = os.path.join(self.path, ".pyeeglab", "cache")
 # Compute cache key
 logging.info("Compute cache key")
 name = self.__class__.__name__.lower()
 if name.endswith("dataset"):
 name = name[:-len("dataset")]
 key = [hash(self), hash(self.pipeline)]
 key = [str(k).encode() for k in key]
 key = [hashlib.md5(k).hexdigest()[:10] for k in key]
 key = list(zip(["loader", "pipeline"], key))
 key = ["_".join(k) for k in key]
 key = name + "_" + "_".join(key)
 logging.info("Computed cache key: %s", key)
 # Load file cache
 cache = os.path.join(cache, key + ".pkl")
 if os.path.exists(cache):
 logging.info("Cache file found at %s", cache)
 with open(cache, "rb") as reader:
 try:
 logging.info("Loading cache file")
 return pickle.load(reader)
 except:
 logging.error("Loading cache file failed")
 # Cache file not found, start preprocessing
 logging.info("Cache file not found, genereting new one")
 data = [row[2] for row in self.query.all()]
 data = self.pipeline.run(data)
 with open(cache, "wb") as file:
 logging.info("Dumping cache file")
 pickle.dump(data, file)
 return data

 def __hash__(self) -> int:
 key = [self.path, self.version, self.minimum_annotation_duration]
 key += self.exclude_file
 key += self.exclude_channels_set
 key += self.exclude_channels_reference
 key += self.exclude_sampling_frequency
 key = json.dumps(key).encode()
 key = hashlib.md5(key).hexdigest()
 key = int(key, 16)
 return key

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyEEGLab’s documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

